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1 Groups

1.1 Groups and Actions

Definition 1.1. A group is the set of symmetries of something.

Example 1.1. Consider the symmetries of a rectangle. You can:
1: Do nothing
a: Reflect horizontally
b: reflect vertically
c: rotate by π.

Definition 1.2. A group is a set G with a binary operation G×G→ G (usually written
(a, b)→ a+ b, a× b, ab, or a · b) such that

(1) There is an identity (called e, 1, or 0) such that ea = a = ae
(2) Each element has inverse a−1 such that a−1a = aa−1 = e
(3) The operation is associative (ab)c = a(bc).

We must reconcile the two definitions. The first, “concrete” definition can be thought
of in the second, “abstract” way by making the operation composition of symmetries. Is
the reverse true? Cayley proved that the answer is yes. To show this, we must construct
some S with G as the set of its symmetries. G has to act on S. This means we have an
action of G on S.

Definition 1.3. An action of G on S is a map G× S → S such that
(1) g(h · s) = (gh) · s for s ∈ S and g, h ∈ G
(2) e · s = s for s ∈ S.

Then what is S that satisfies this properties? Well, we can set S = G and make the
action on S multiplication by G. This represents G as a subgroup of the symmetries of
S; this is not necessarily the group of symmetries of S. But we have shown that G is
isomorphic to the set of permutations of a set. Recall:
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Definition 1.4. A subgroup H of G is a subset of G closed under × and inverses, containing
the identity, e.

Definition 1.5. A homomorphism from G to H is a function from G to H preserving ×,
inverses, and the identity; i.e. f(ab) = f(a)f(b).

Definition 1.6. An isomorphism is a homomorphism that is a bijection.

If there is an isomorphism from G to H, then they are essentially the same, up to a
relabeling of the elements.

Example 1.2. Let G = (R,+), and let H = (R∗,×) (the nonzero reals). The isomorphism
G→ H is the exponential map.

So our new problem is to put some “structure” on S(= G) so that G is the set of all
symmetries preserving the structure. The structure is a right action of G on S.

Definition 1.7. A left action G × S → S is given by g · s. A right action S × G → S is
given by s · g.

Remark 1.1. The left and right actions of G on S are different, unless the operation is
commutative.

A symmetry f : S → S preserves a right action of G if f(s ·g) = f(s) ·g. Elements of G
acting on left preserve right actions as (g ·s)·h = g ·(s·h) (which follows from the associative
law). The right action commutes with the left action. Moreover, anything commuting with
the right action is of the form s 7→ g · s from some g ∈ G. Suppose f : S → S commutes
with a right action. Then f(e) = g for some g. Then f(s) = f(es) = f(e) · s = g · s. So f
is “the same” as g. So G is exactly the symmetries of G preserving the right action of G.

Picture G as a graph, where edges between elements are labeled by their right actions.
Then the left action of G is the symmetries of the graph.

1.1.1 The 8 actions of a group on itself

Suppose we have left action of G on S (g, s) 7→ g · s. We can get a right action by putting
s · g = g−1s. Indeed, we have s(gh) = (gh)−1s = h−1(g−1s) = (sg)h.

4 left actions of G on G:
1. g · s = s, the “trivial” action
2. g · s = gs, the standard left action
3. g · s = sg−1, a right action “made into” a left action
4. g · s = gsg−1, the adjoint action, or conjugation 1

1Some people write conjugation as g−1sg.
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1.2 Lagrange’s theorem and consequences

The way we will approach group theory is to list all groups and to prove theorems when
we need to study groups of a particular order (different from the treatment in the Lang
textbook).

I Order 1: the “trivial” group

I Order 2, 3 (prime order): There is just one group of any prime order p.

To prove the latter fact, we need Lagrange’s theorem.

Theorem 1.1 (Lagrange). If H is a subgroup of G, and the order (or number of elements)
of G,H is finite. Then the order of H divides the order of G.

Definition 1.8. The left cosets of H in G are sets of the form gH := {gh : h ∈ H}. The
right cosets of H in G are sets of the form Hg := {hg : h ∈ H}.

Proof. Look at coests of H in G. Any two left cosets have H elements. Also, any two left
cosets are either the same or disjoint. If g1h1 = g2h2, then for h ∈ H, g1h = g2(h2h

−1
1 h),

which is in g2H. So |G| = |H| × number of left cosets.

A special case: if g ∈ G, look at the subgroup H of all powers of g; i.e. H = {gn : n ∈ Z}.
The order of g is the smallest n > 0 such that gn = e (if n exists). The order of subgroup
H is the order of g. If |G| is finite, g ∈ G, then order of g divides order of G. Suppose G
has order p (prime). Pick g ∈ G. Then g has order 1 or p; the first case is g = e, and the
second is for every other element. So G = H.

1.2.1 Applications of Lagrange’s theorem

Theorem 1.2 (Fermat). If g ∈ Z and p (prime) does not divide g, then gp−1 = 1 (mod p).

Proof. Look at group (Z/pZ)∗. This is a group of order p− 1, so every element has order
dividing p− 1.

Theorem 1.3 (Euler). Suppose g,m ∈ Z are coprime. Then gφ(n) = 1 (mod m), where
φ(m) is the number of irreducible elements of Z/mZ.

Proof. Same as the proof of Theorem 1.2.
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1.2.2 Geometric meaning of Lagrange’s theorem

Suppose G acts on a set S transitively. If s, t are in S, then s = g · t for some g. Fix some
s ∈ S. Put H = {h ∈ G : h · s = s ∀s ∈ S}, the elements of G fixing S. Then the points of
S are in bijection with the cosets of H, sending t 7→ {g ∈ G : s.t. g · s = t}. These are left
cosets since if g · s = t, then (gh) · s = t, as h · s = s.

Interpret |G| = |H| × number of left cosets in terms of the action. Then we have that
|G| = number of elements fixing s× number of elements of set S. For example, if G is the
group of rotations of an icosahedron, then

|G| = number of elements fixing center of a face× number of faces.

So in this case, |G| = 3× 20 = 60.

1.3 Groups of order 4 and product groups

I Groups of order 4: 2 Examples.

I (Z/4Z,+) with elements {0, 1, 2, 3}
I Symmetries of a rectangle {1, a, b, c}

To show that these two are not isomorphic, look a the orders of elements. The orders
of elements in the former are 1, 4, 2, and 4; the orders of elements in the latter are 1, 2, 2,
and 2. Order does not change under isomorphism, so these groups are not isomorphic.

Are these all the groups of order 4? Well, by Lagrange’s theorem, all elements have
order 1, 2, or 4. If a group has an element g of order 4, then the elements are 1, g, g2, g3 with
the product being gagb = ga+b (mod 4). Then this is isomorphic to (Z/4Z,+). If all elements
have order 2, G is abelian (commutative). 1 = g2h2 = ghgh, so hg = h−1g−1 = gh, making
G abelian. Writing G additively, G is a vector space over the field F2 with 2 elements. So
G is isomorphic to the unique 2-dimensional vector space over F2. So, indeed, there are
just 2 groups of order 4.

Definition 1.9. The product of 2 groups G and H is G × H, where the operation is
(g1, h1)(g2, h2) = (g1g2, h1, h2).

The group {1, a, b, c} is isomorphic to a product of 2 subgroups. {1, a, b, c} ∼= {1, a} ×
{1, b}, where 1 7→ (1, 1), a 7→ (a, 1), b 7→ (1, b), and c 7→ (a, b).

Example 1.3. R∗ ∼= {1,−1} × R+.

Example 1.4. The polar decomposition gives us C∗ = S1 × R+.

Example 1.5. If F is a field, the vector space Fn is a product of n copies of F, under
addition.
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Example 1.6. Let G be the group of all roots of 1 in C (contains square roots, cube roots,
fourth roots, etc). Then G =

{
z ∈ C : z = e2πi(m/n),m, n ∈ Z

}
. Define the subgroups

H1 =
{
z ∈ G : ∃n ∈ Z s.t. z2n = 1

}
and H2 =

{
z ∈ G : ∃n ∈ Z s.t. z2n+1 = 1

}
. Then G ∼=

H1 ×H2. In fact, we can separate in this way by any prime, not just by 2.
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